

# GENERAL INFORMATION

| Course Prefix/Number: CGS1021                           | Course Title: SCIENTIFIC COMPUTING                                        |
|---------------------------------------------------------|---------------------------------------------------------------------------|
| Number of Credits: 4 credits (3 hr. lecture; 2 hr. lab) |                                                                           |
| Degree Type                                             | □ B.A. □ B.S. □ B.A.S ⊠ A.A. ⊠ A.S. □ A.A.S.<br>□ C.C.C. ⊠ A.T.C. □ V.C.C |
| Date Submitted/Revised:                                 | Effective Year/Term: 2007-1                                               |
| New Course Competency                                   | e Competency                                                              |

Course Description (limit to 50 words or less):

This course explores the specialized features of common computer desktop applications as applied to biotechnology data. Through hands-on practical assigments, students will study and practice the computerized techniques by which to organize, manipulate, report, present, depict and analyze biomolecular data and information. Lab fee. 3hr. lecture; 2 hr. lab. Co-requisite: STA2023

Prerequisite(s):

Corequisite(s): STA2023

#### Competency 1:

The student will demonstrate how to use the basic, computational and scientific features of a desktop word processing application by:

- 1. Creating, formatting, editing and saving a word processing document.
- 2. Using existing templates, forms and wizards to create documents.
- 3. Creating, formating, editing, and printing documents containing scientific and mathematical notations, graphs, and charts.
- 4. Creating documents that are linked to data-sourcing objects.
- 5. Accessing and linking to pages on the World Wide Web.

## Competency 2:

The student will demonstrate the ability to produce scientific presentations by:

- 1. Creating, editing, and saving a presentation.
- 2. Using existing templates, forms, and wizards.
- 3. Creating, editing, printing, and showing to the class presentations with scientific and mathematical notations, graphs, and charts.
- 4. Creating presentations that are linked to data-sourcing objects.
- 5. Accessing and linking to pages on the World Wide Web.

## Competency 3:

The student will demonstrate the ability to use the basic, computational, and scientific features of desktop spreadsheet applications by:

- 1. Developing and implementing
  - a. numerical expressions
    - b. formulas

Revision Date: \_\_\_\_\_ Final as of 9/11/2008--6:03:58 PM Approved By Academic Dean Date: \_\_\_\_\_ King, D.

Reviewed By Director of Academic Programs Date:

- c. conditional statements.
- 2. Representing results in the appropriate data type and format.
- 3. Creating, editing, and printing spreadsheets that incorporate scientific and mathematical notations.
- 4. Creating, editing, and printing 2-, 3-, and n-dimensional graphs and charts.
- 5. Creating interactive functionality such as buttons, forms and menus.
- 6. Accessing and linking to pages on the World Wide Web .

#### Competency 4:

The student will use the basic, computational and scientific features of desktop database applications by:

- 1. Developing and implementing
  - a. numerical expressions
  - b. formulas
  - c. conditional statements
- 2. Representing results in the appropriate data type and format.
- 3. Creating, editing, and printing spreadsheets with scientific and mathematical notations.
- 4. Creating, editing and printing 2, 3 and n-dimensional graphs and charts.
- 5. Developing interactive functionality such as buttons, forms, menus and switchboards.
- 6. Accessing and linking to pages on the World Wide Web .

### Competency 5:

The student will obtain, interpret, store, and derive information from simple to moderately complex biomolecular datasets using a desktop database application by:

- 1. Accessing and downloading, via the internet, biomolecular data from public repositories.
- 2. Interpreting the metadata.
- 3. Creating and populating a biomolecular database from the data and metadata interpretation.
- 4. Developing and implementing
  - a. queries
  - b. join strategies
  - c. referential integrity rules
- 5. Developing interactive functionality such as buttons, forms, menus, and switchboards.
- Developing a desktop database application to derive information from the biomolecular database through the use of queries, joins, referential integrity and program functionality.
- 7. Outputting the data as an XML object.

### Competency 6:

The student will demonstrate an understanding of simple to moderately complex biomolecular datasets using a spreadsheet application by:

- 1. Accessing and downloading via the internet biomolecular data from public repositories.
- 2. Interpreting the metadata.
- 3. Importing the data.

Revision Date: Final as of 9/11/2008--6:03:58 PM

King, D. Reviewed By Director of Academic Programs Date:

Approved By Academic Dean Date: \_\_\_\_\_

- 4. Deploying interactive functionality as a means to facilitate access to the data.
- 5. Outputting the data as an XML object.

## Competency 7:

The student will perform statistical analysis on biomolecular data using a desktop spreadsheet application by:

- 1. Applying each of the following statistical methods to the data:
  - a. Average, Median, Mode, Max, Min
  - b. Frequency Distribution
  - c. Normal and Bionomial distribution
  - d. Cluster Analysis
  - e. Trend analysis using the least-squares method.
- 2. Using ordering and roll-up techniques in order to summarize the data.
- 3. Converting data into multi-dimensional information by:
  - a. Creating pivot tables.
  - b. Creating 2, 3 and n-dimensional graphs, charts and pivot charts referencing the pivot tables.
- 4. Transforming the representation of the information into web-usable objects.
- 5. Creating a scoring matrix where the cells are logarithms of ratios of two probabilities.

#### Competency 8:

The student will perform statistical analysis on biomolecular data using a desktop database application by:

- 1. Applying each of the following statistical methods to the data:
  - a. Average, Median, Mode, Max, Min
  - b. Frequency Distribution
  - c. Normal and Bionomial distribution
  - d. Cluster Analysis
  - e. Trend analysis using the least-squares method.
- 2. Converting data into multi-dimensional information by:
  - a. Creating pivot tables and pivot web-forms.
  - b. Generating 2, 3 and n-dimensional graphs, charts and pivot charts referencing the pivot tables and pivot web-forms.
- 3. Transforming the representation of the information into web-usable objects.

### Competency 9:

The student will perform data analysis using a spreadsheet application on biomolecular data by:

- 1. Using ordering and roll-up techniques to summarize the data.
- 2. Creating and using data filters.
- 3. Applying statistical methods to the ordered, summarized, and filtered data.
- 4. Generating 2-, 3-, and n-dimensional graphs, charts and pivot tables from the ordered, summarized, and filtered data.
- 5. Transforming the representation of the information into web-usable objects.

King, D. Reviewed By Director of Academic Programs Date:

#### Competency 10:

The student will demonstrate the use and interpretation of basic analytics on biomolecular information through the use of a spreadsheet by:

- 1. Drilling-down on pivot tables.
- 2. Interpreting 2, 3, and n-dimensional graphs and charts.
- 3. Creating and implementing what-if scenarios.
- 4. Composing word processing documents that are dynamically linked to pivot tables and charts detailing an analysis of the derived information.
- 5. Performing basic data mining.
- 6. Creating a user interface to dynamically perform basic data mining.

Revision Date: \_\_\_\_\_ Final as of 9/11/2008--6:03:58 PM Approved By Academic Dean Date: \_\_\_\_\_ King, D. Reviewed By Director of Academic Programs Date: