

COP 1220 – Introduction to Programming in C++

School of Technology and Engineering May 16, 2003
1

Course Justification

This course is a required first programming C++ course in the following degrees:
Associate of Arts in Computer Science, Associate in Science: Computer
Programming and Analysis; Game Development; and Internet Services
Technology. It is also required first programming course in C++ for the following
College Credit Certificate tracks: Computer Programming and Web Development
Specialist.

COP 1220 – Introduction to Programming in C++

School of Technology and Engineering May 16, 2003
2

Course Description
Introduction to Programming in “C++” covers the syntax and rules of the C++
Language. Students are required to code, compile, and execute programs. The
topics of program design, structured modular programming arrays, report
generation, and file processing are included. Recommended for Computer
Science and Computer Information Systems majors. No previous computer
courses are required although CGS 1060 is recommended. Laboratory fee. (3 hr.
lecture; 2 hr. lab)

Course Competencies

Competency 1: The student will demonstrate an understanding of the
program development process by:

a. Writing pseudocode for program development before writing the code.
b. Applying the techniques of functional decomposition to break a

programming design problem into smaller pieces.
c. Incorporating adequate and meaningful comments into the source code

of programming projects.

Competency 2: The student will demonstrate a mastery of basic C++
fundamental data types and operators by:

a. Using all the data types (float points, integers, long, double, boolean,
characters, and strings) available in C++ for programming assignments.

b. Using descriptive and meaningful names in programming assignments.
c. Creating programs the use casting of data types.
d. Creating programs that use all existing operator (+,-,*, %,/,=) available

in C++.
e. Explaining the properties of a variable such as its name, value, scope,

persistence, and size.

COP 1220 – Introduction to Programming in C++

School of Technology and Engineering May 16, 2003
3

Competency 3: The student will demonstrate an understanding of a visual
C++ programming environment by:

a. Creating C++ programs and projects in a visual C++ IDE.
b. Compiling C++ programs and projects in a visual C++ IDE.
c. Testing C++ programs and projects in a visual C++ IDE.
d. Debugging C++ programs and projects in a visual C++ IDE.
e. Executing C++ programs and projects in a visual C++ IDE.

Competency 4: The student will demonstrate an understanding of
conditional statements by:

a. Creating programs that use if, else if, and else statements to evaluate
conditions.

b. Creating a program that uses logical operators (and, not, or) in
conditional statements.

c. Creating a program that uses comparison operators (==, <, >, <=, >=) in
conditional statements.

d. Creating a program that uses the Switch, Case, and Break conditional
structure to evaluate the conditions.

e. Creating a program that uses nested conditional statements.

Competency 5: The student will demonstrate an understanding of loops
by:

a. Creating programs that use while, do-while and for loops to create
repetition.

b. Analyzing existing programs with loops and determine the results.
c. Creating programs that use nested loops.

Competency 6: The student will demonstrate a mastery of functions by:
a. Creating functions that use call-by-reference and call-by-value.
b. Modifying existing programs that use functions.

COP 1220 – Introduction to Programming in C++

School of Technology and Engineering May 16, 2003
4

Competency 6: (Continued)
c. Creating programs that overloadfunctions.
d. Creating programs that include and use existing C++ Library functions.
e. Creating a program that uses functions to return values.
f. Identifying the scope of variables in functions.

Competency 7: The student will demonstrate an understanding of arrays
by:

a. Explaining the form and uses of array.
b. Creating a program that uses single and multi-dimensioned arrays.
c. Evaluating existing programs that sort arrays.
d. Evaluating existing programs that search arrays.

Competency 8: The student will demonstrate an understanding of
structures by:

a. Defining the uses of structures.
b. Creating a program that uses structures.

Competency 9: The student will demonstrate an understanding of the
input and output functions of a program by:

a. Creating a program that reads an existing sequential file.
b. Creating a program that creates a sequential file.
c. Creating a program that modifies an existing sequential file.
d. Create a program that produces formatted printed output.
e. Modifying a program that produces formatted printed output.

Competency 10: The student will demonstrate an understanding of classes
by:

a. Evaluating classes within existing programs.
b. Creating a program that uses classes.

COP 1220 – Introduction to Programming in C++

School of Technology and Engineering May 16, 2003
5

Competency 10: (Continued)
c. Explaining the scope of a class
d. Accessing members of a class.

	
	Course Competencies
	a. Writing pseudocode for program development before writing the code.
	b. Applying the techniques of functional decomposition to break a programming design problem into smaller pieces.
	c. Incorporating adequate and meaningful comments into the source code of programming projects.
	a. Using all the data types (float points, integers, long, double, boolean, characters, and strings) available in C++ for programming assignments.
	b. Using descriptive and meaningful names in programming assignments.
	c. Creating programs the use casting of data types.
	d. Creating programs that use all existing operator (+,-,*, %,/,=) available in C++.
	e. Explaining the properties of a variable such as its name, value, scope, persistence, and size.
	a. Creating C++ programs and projects in a visual C++ IDE.
	b. Compiling C++ programs and projects in a visual C++ IDE.
	c. Testing C++ programs and projects in a visual C++ IDE.
	d. Debugging C++ programs and projects in a visual C++ IDE.
	e. Executing C++ programs and projects in a visual C++ IDE.
	a. Creating programs that use if, else if, and else statements to evaluate conditions.
	b. Creating a program that uses logical operators (and, not, or) in conditional statements.
	c. Creating a program that uses comparison operators (==, <, >, <=, >=) in conditional statements.
	d. Creating a program that uses the Switch, Case, and Break conditional structure to evaluate the conditions.
	e. Creating a program that uses nested conditional statements.
	a. Creating programs that use while, do-while and for loops to create repetition.
	b. Analyzing existing programs with loops and determine the results.
	c. Creating programs that use nested loops.
	a. Creating functions that use call-by-reference and call-by-value.
	b. Modifying existing programs that use functions.
	 Competency 6: (Continued)
	c. Creating programs that overloadfunctions.
	d. Creating programs that include and use existing C++ Library functions.
	e. Creating a program that uses functions to return values.
	f. Identifying the scope of variables in functions.
	a. Explaining the form and uses of array.
	b. Creating a program that uses single and multi-dimensioned arrays.
	c. Evaluating existing programs that sort arrays.
	d. Evaluating existing programs that search arrays.
	a. Defining the uses of structures.
	b. Creating a program that uses structures.
	a. Creating a program that reads an existing sequential file.
	b. Creating a program that creates a sequential file.
	c. Creating a program that modifies an existing sequential file.
	d. Create a program that produces formatted printed output.
	e. Modifying a program that produces formatted printed output.

