

Course Competencies Template - Form 112

GENERAL INFORMATION		
Name: Dr. Diane King	Phone #: 77021	
Course Prefix/Number: ETI 4480C	Course Title: Applied Robotics	
Number of Credits: 4		
Degree Type	□ B.A. □ B.S. □ B.A.S. □ A.A. □ A.S. □ A.A.S. □ C.C.C. □ A.T.C. □ V.C.C	
Date Submitted/Revised: 02-26-2008	Effective Year/Term: 2009-2	
Course to be designated as a General Education course (part of the 36 hours of A.A. Gen. Ed. coursework): Yes No		
The above course links to the following Le	arning Outcomes:	
 □ Communication ☑ Numbers / Data ☑ Critical thinking ☑ Information Literacy □ Cultural / Global Perspective 	☐ Social Responsibility ☐ Ethical Issues ☐ Computer / Technology Usage ☐ Aesthetic / Creative Activities ☐ Environmental Responsibility	
Course Description (limit to 50 words or less, <u>must</u> correspond with course description on		
Form 102):		
This is an upper division level course designed as an introduction to robotics programming and includes robotic applications for multifunction part manipulation and motion with stepper and servo-motors. Students learn topics related to robotic design including robotic vision, motion planning, sensing and sensors, actuators, navigation systems, mobility, forward and inverse kinematics, and non-holonomic path planning. Laboratory activities provide hands-on application of concepts and theories. Prerequisite: CET3126C. Laboratory fee. (2 hr lecture, 4 hr lab)		
Prerequisite(s): CET3126C	Co requisite(s):	
. ,		

Course Competencies:

Competency 1: The student will demonstrate an understanding of robotics and its history by:

- 1. Explaining what a robot is.
- 2. Explaining the general functions of a robot.
- 3. Discussing the origins and history of robotics.
- 4. Describing the design steps followed to develop a robotic system.
- 5. Identifying and discussing the various fields involved in construction of a robot.
- 6. Discussing the applications and uses of robotics.

Competency 2: The student will demonstrate an understanding of robotic (computer) vision by:	
Revision Date: 02-26-2008	
Approved By Academic Dean Date:	Reviewed By Director of Academic Programs Date:

- 1. Explaining the basic concepts of image formation.
- 2. Defining and applying image projection and convolution.
- 3. Implementing edge detection algorithms and applying them in images.
- 4. Discussing and implementing image interpretation techniques.
- 5. Identifying stereo imaging techniques and discussing their applications.

Competency 3: The student will demonstrate an understanding of motion planning by:

- 1. Evaluating potential functions.
- 2. Designing road maps and their applications in robotics.
- 3. Applying cell decompositions to mobile robots.

Competency 4: The student will demonstrate an understanding of sensing, sensors, and actuators by:

- 1. Analyzing the correlation between human sensors and robotic sensors.
- 2. Applying human and animal sensing principles to robotics design.
- 3. Defining transduction and how it applies to sensors.
- 4. Interfacing various forms of sensing to microprocessors or computers.
- 5. Discussing complex sensors and choosing suitable interfaces.

Competency 5: The student will demonstrate an understanding of robotic navigation by:

- 1. Analyzing the underlying physics involved in navigation.
- 2. Applying the physical concepts of position, orientation, velocity, and acceleration to the design of a mobile robot.
- 3. Incorporating hardware sensors into a robotic navigation system.

Competency 6: The student will demonstrate an understanding of mobility in robotics by:

- 1. Discussing the basic concepts in mobile robotic platform designs.
- 2. Explaining how differential drive and skid steering are used in robotic mobility.
- 3. Describing the use of synchronous drives and distributed actuator arrays.
- 4. Distinguishing between Ackerman and articulated drives and appropriate applications.
- Identifying the various pros and cons of each type of mobility system.
- 6. Creating prototypes using mobility design systems and principles.

Competency 7: The student will demonstrate an understanding of forward and inverse kinematics by:

Revision Date: 02-26-2008	
Approved By Academic Dean Date:	Reviewed By Director of Academic Programs Date:

- 1. Applying transformation matrices.
- 2. Using Diffie-Hellman (DH) Transformations.
- 3. Using geometric and algebraic methods as applied to kinematics.

Competency 8: The student will be able to apply non-holonomic path planning by:

- 1. Locating a non-holonomic constraint is in a mobile robotic system.
- 2. Developing mathemtical models of these systems.
- 3. Analyzing non-holonomic motion.
- 4. Analyzing case studies in robotic motion.

Revision Date: 02-26-2008	
Approved By Academic Dean Date:	Reviewed By Director of Academic Programs Date: