Miami-Dade Community College MAC 2311 Calculus and Analytic Geometry 1

<u>Course Description</u>: Topics include: Limits; continuity; differentiation of algebraic and transcendental functions; differentials; introduction to integration and the Fundamental Theorem of Calculus; applications. (5-hrs. lecture)

<u>Pre-requisite</u>: MAC 1114 and MAC 1140, or MAC 1147, with a grade of C or better or equivalent.

Course Competencies:

Competency 1:	The Student will demonstrate knowledge of limits by:	
	 a. Computing limits at a point and at infinity algebraically, b. Finding limits using L'Hopital's Rule, c. Applying the definition of continuity, d. Determining where a function is continuous or discontinuous. 	
Competency 2:	The Student will demonstrate knowledge of differentiation by:	
	 a. Defining the derivative of a function as a limit, b. Finding the derivative of a function using the definition, c. Finding the equation of the line tangent to a curve at a point using a derivative, d. Finding the rate of change of a function using a derivative, e. Finding derivatives of polynomial, trigonometric, exponential, logarithmic, and hyperbolic functions using differentiation rules, 	
	f. Finding derivatives using the chain rule,g. Implicitly differentiating equations,	

- h. Computing higher order derivatives,
- i. Determining maximum and minimum points of a function and intervals where it increases or decreases,
- j. Determining points of inflection of a function and intervals where it is concave upward or concave downward,
- k. Using the first and second derivative tests to find local extrema,
- 1. Applying Rolle's theorem and the mean value theorem,
- m. Solving optimization problems,
- n. Solving problems involving related rates.

Competency 3:	The	The Student will demonstrate knowledge of integration by:		
	a.	Finding antiderivatives involving polynomial, trigonometric, inverse trigonometric, exponential, logarithmic, and hyperbolic functions,		
	b.	Evaluating a definite integral as a limit of a Riemann sum,		
	с.	Computing the average value of a function over an interval,		
	d.	Computing definite integrals using the fundamental theorem of calculus,		
	e.	Solving applied problems using definite integrals,		
	f.	Finding indefinite integrals with a change of variables,		
	g.	Finding the area or regions under and between curves,		
	h.	Finding the volume of solids of revolution.		