Miami-Dade Community College
 MAC 2312 Calculus and Analytic Geometry 2

Course Description Topics include: Techniques of integration; differentiation and integration of inverse trigonometric, exponential, logarithmic, and hyperbolic functions; sequences and power series; parametric equations and polar coordinates; improper integrals; applications. (4-hrs. lecture)

Pre-requisite: MAC 2311 with a grade of C or better or equivalent.
Course Competencies:

Competency 1: The Student will demonstrate knowledge of integrating functions by:
a. Using integration by parts,
b. Computing trigonometric integrals,
c. Using appropriate trigonometric substitutions,
d. Using partial fractions,
e. Using rationalizing substitutions.

Competency 2: The Student will demonstrate knowledge of approximate integration by:
a. Using mid-point rule,
b. Using trapezoidal rule,
c. Using Simpson's rule

Competency 3: The Student will demonstrate knowledge of improper integrals and their convergence by:
a. Computing convergent improper integrals of type-1 and type-2,
b. Identifying improper integrals that are divergent,
c. Using comparison theorems to test their convergence.

Competency 4: The Student will demonstrate knowledge of applications of integrals by:
a. Finding the arc length,
b. Finding the area of surface of revolution,
c. Finding moments and centers of mass

Competency 5: The Student will demonstrate knowledge of differential equations by:
a. Modeling differential equations,
b. Solving separable equations.

Competency 6: The Student will demonstrate knowledge of curves defined by parametric and polar equations by:
a. Drawing graphs of such curves,
b. Finding tangents and areas that involve such curves,
c. Finding arc lengths and areas of surface of revolutions of such curves.

Competency 7: The Student will demonstrate knowledge of sequences and series by:
a. Determining the convergence or divergence of a sequence with different techniques,
b. Computing the limits of convergent sequences,
c. Recognizing types of series, such as, geometric, telescopic, harmonic, alternating, p-series, power series etc.,
d. Determining convergence or divergence of a series by comparison test, limit-comparison test, integral test, alternating series test, p-series test,
e. Determining the absolute convergence or conditional convergence by ratio test and/or root test,
f. Determining the radius of convergence and the interval of convergence of a power series,
g. Finding the Taylor and Maclaurin series of an analytic function
h. Finding binomial series.

