Miami-Dade Community College MAC 2313 CALCULUS AND ANALYTIC GEOMETRY 3

<u>Course Description</u> Topics include: Analytic geometry of three dimensions; vectors and vectorvalued functions; curves and surfaces in 3-space; partial differentiation; multiple integrals; line integrals; vector fields; Green's Theorem; applications. (4 hrs. lecture)

Pre-requisite: MAC 2312 with a grade of C or better or equivalent.

Course Competencies:

Competency 1:	The Student surfaces by	will demonstrate knowledge of three-dimensional vectors and
	a.	Computing sums, differences, scalar multiples, and magnitudes of three-dimensional vectors
	b.	Computing dot products and cross products of three- dimensional vectors
	с.	Solving applied problems using dot and cross products
	d.	Determining equations of lines and planes in three dimensions
	e.	Determining equations of quadric surfaces
	f.	Representing points and surfaces in cylindrical and spherical coordinates
Competency 2:	The Student	will demonstrate knowledge of curves in space by
	a.	Representing curves as vector-valued functions
	b.	Representing curves parametrically
	с.	Representing curves as intersections of two surfaces
	d.	Computing limits, derivatives and integrals of vector-valued functions
	e.	Computing the velocity and the acceleration of a particle moving along a curve in three-space
Competency 3:	The Student	will demonstrate knowledge of partial differentiation by
	a.	Computing partial derivatives of any order of functions of two or more variables
	b.	Applying appropriate chain rules to compute partial derivatives and total derivatives
	с.	Computing gradients of functions of two or more variables
	d.	Computing directional derivatives of functions of two or more variables

e. Determining the direction in which the directional derivative of a function at a point is maximized or minimized

f.	Determining equations of tangent planes and normal lines to a surface at a given point of the surface
g.	Finding extremes of functions of two or more variables
The S	Student will demonstrate knowledge of multiple integration by
a.	Evaluating double and iterated integrals in rectangular and polar coordinates
b.	Solving applied problems involving double integrals
c.	Evaluating triple and iterated integrals in rectangular, cylindrical, and spherical coordinates
d.	Solving applied problems involving triple integrals
The S	Student will demonstrate knowledge of vector calculus by
a.	Computing the divergence and curl of a vector field
b.	Determining the potential function of a conservative vector field
с.	Computing line integrals over oriented curves
	-
d.	Solving applied problems involving line integrals
d. e.	Solving applied problems involving line integrals Determining whether a line integral is independent of path
d. e. f.	Solving applied problems involving line integrals Determining whether a line integral is independent of path Evaluating line integrals using Green's Theorem
	f. g. The S a. b. c. d. The S a. b. c.