Miami-Dade Community College MAP 2302 Introduction to Differential Equations.

<u>Course Description</u>: Topics include: Equations of first order; linear equations with constant coefficients; non-homogeneous equations; variation of parameters; solution using Laplace Transforms; elementary existence theorems; series solutions; applications. (3 hrs. lecture)

Pre-requisite: MAC 2312 with a grade of C or better or equivalent.

Course Competencies:

Competency 1:	The Student will identify, and classify,
	a. Ordinary differential equations (ODE) by order and
	linearity.
	b. First order ODE as separable, exact, linear, homogeneous
	or Bernoulli.
	c. Higher order ODE as homogeneous or nonhomogeneous.
Competency 2:	The Student will establish the analogies and differences between
	a. Solution of an ODE,
	b. Particular solution,
	c. General solution,
	d. N-Parameter family of solutions.
Competency 3:	The Student will construct ODE models and solve them in
	situations such as,
	a. Elementary population dynamic
	b. Mixture problems
	c. Harmonic oscillator (free undamped, free damped, and
	forced motion)
Competency 4:	The Student will demonstrate knowledge of the initial value
	problem (IVP) and boundary value problems (BVP) by,
	a. Recognizing initial value problems,
	b. Recognizing boundary value problems,
	c. Applying the Existence and Uniqueness Theorem for first-order IVP,
	d. Applying the Existence and Uniqueness Theorem for an n-th order IVP for linear equations,
	e. Recognizing that Existence and Uniqueness Theorem does not apply to BVP.

Competency 5: The Student will demonstrate proficiency-obtaining solutions of ODE by,

- a. Solving first order ODE of various types (separable, exact, linear, homogeneous, and Bernoulli),
- b. Solving second order ODE applying the reduction of order method,
- c. Higher order linear ODE with constant coefficients applying the annihilator approach and variation of parameters
- d. Second order ODE with polynomials coefficients applying series solutions.

Competency 6: The Student will demonstrate knowledge of the Laplace Transform method by,

- a. Solving IVP for linear ODE with constant coefficients,
- b. Solving integral and integrodifferential equations.