Miami-Dade Community College MAS 2103 Elementary Linear Algebra

<u>Course Description</u> Topics include: Vector spaces; linear independence and bases; systems of linear equations; linear transformations; matrices; rank and nullity; eigenvalues and eigenvectors. (3 hrs. lecture)

<u>Pre-requisite</u>: MAC 2311 with a grade of C or better or equivalent.

Course Competencies:

Competency 1:	The Student will solve linear systems of equations by:		
	a.	Applying elementary row operations to the system,	
	b.	Applying Gauss-Jordan elimination.	
-			
Competency 2:	The Student will demonstrate proficiency in Matrix Algebra by:		
	a.	Performing matrix addition, scalar multiplication, and matrix multiplication.	
	b.	Finding the transpose, the cofactor, and the adjoint matrices of a given matrix,	
	c.	Finding the inverse of an invertible matrix by either the formula or applying row operations.	
	d.	Solving linear systems applying matrix algebra.	
Competency 3:	The Student will demonstrate proficiency in Determinants Theory		
	by:		
	a.	Evaluating determinants by either row reduction or cofactor expansion,	
	b.	Applying the properties of the determinants for solving problems.	
Competency 4:	The Student will demonstrate knowledge of the Euclidean n-th		
	space E ⁿ and its properties by:		
	a.	Performing basic operations in	
	b.	Determining if a subset of E ⁿ is a subspace of E ⁿ	
	c.	Recognizing the Euclidean norm, distance, and inner product,	
	d.	Determining if a set of vectors is linearly independent,	
	e.	Finding basis for E ⁿ	
	f.	Finding orthonormal basis for E ⁿ applying the Gram	
		Schmidt process.	

Competency 5:	The Student will recognize linear transformations between E^n and E^m and:	
	a.	Calculate the kernel and the range of a linear transformation,
	b.	Find a matrix representation of a given linear transformation,
	с.	Describe the geometric properties of basic linear transformations in the plane.
Competency 6:	The Student will demonstrate knowledge of eigenvalues and eigenvectors by:	
	a.	Defining eigenvalues eigenvectors of a matrix and a linear transformation,
	b. c.	Finding eigenvalues and eigenspaces of a matrix, Recognizing the differences between algebraic multiplicity and geometric multiplicity of an eigenvalue.
Competency 7:	The St	udent will demonstrate knowledge of abstract spaces by
	a.	Performing vector operations in spaces such as space of continuous functions, space of polynomials functions, and space of matrices,
	b.	Finding basis and coordinate vectors in abstract spaces.