Miami-Dade Community College PHY2049 – Physics with Calculus II 3 credits, 4 contact hours

<u>Course Description</u>: This is the second semester of a foundation course with calculus for science and engineering majors, covering: electric fields, basic DC circuits, magnetic fields, basic AC circuits, Maxwell's equations, electromagnetic waves and optics.

<u>Prerequisite</u>: Physics 2048 and Calculus I <u>Corequisites</u>: Calculus II <u>Course Competencies</u>:

<u>Note</u> :	 In all the following, the <u>application</u> of each topic will include: solving problems, using the methods of algebra and calculus; performing units conversions as necessary to obtain a consistent set of units of measure for a particular problem; drawing a sketch or graph when needed; associating each concept and formula with practical aspects of everyday life and current technology; with a strong emphasis on <u>problem solving</u>.
Competency 1:	The Student will demonstrate an understanding of electric charges by:
	a. explaining electrostatic interactions between charges;
	b. calculating the resultant force exerted on a charge by other charges.
Competency 2:	The Student will demonstrate an understanding of electric fields by:
	a. calculating the resultant electric field at a point which results from one or more point charges;
	b. calculating the resultant electric field at a point which results from a distribution of charges which leads to a simple analytical expression;
	c. calculating the acceleration of a charged particle in a uniform electric field;
	d. finding the net force and torque acting on a dipole in an electric field;
	e. using Gauss's law to find the electric field near a symmetrical distribution of charge.
Competency 3:	The Student will demonstrate an understanding of electric potential by:
	 calculating the electric potential at a point in the vicinity of one or more point charges;
	b. calculating the electric potential at a point in the vicinity of a continuous distribution of charges;
	c. finding the electric field in a region where the electric potential is known as a function of position;
	d. finding the change in potential energy which occurs when a charge is moved from one point to another in an electric field.

Competency 4:	The Student will demonstrate an understanding of capacitance by:
	a. calculating the equivalent capacitance for two or more capacitors
	connected in series or parallel;
	b. calculating the energy and energy density within a capacitor;
	c. explaining the effects produced by a dielectric material between the
	plates of a capacitor.
Competency 5:	The Student will <u>demonstrate an understanding of the concepts of</u>
	electric current and resistance by:
	a. calculating the quantity of charge transferred by a given current;
	b. finding the resistance of a conductor of known material and
	dimensions;
	c. Infiding the current and power in various elements of a network of
	d finding the surrout at various points of a multi loop sirewite
	a. Infining the current at various points of a multi-loop circuit,
	e. Infining the charge, current, power and energy as a function of time in a
	circuit with resistance and capacitance.
Competency 6:	The Student will demonstrate an understanding of the magnetic field by:
	a. finding the magnetic force on a charged particle in motion;
	b. finding the magnetic force on a current-carrying wire;
	c. calculating the torque on a current loop in a uniform magnetic field;
	d. using Biot-Savart's law for a current element to calculate magnetic
	fields with a simple analytical expression;
	f. using Ampere's law to find the magnetic field near a symmetrical
	distribution of currents.
Competency 7:	The Student will demonstrate an understanding of electromagnetic
Competency 7.	induction by:
	a finding the magnetic flux across a surface:
	b using Faraday's Law to find the induced electromotive force in a loop:
	c. determining the direction of the induced current by utilizing Lenz's law
	d. explaining the operating principle of an AC generator:
	e. calculating the induced electric field associated to a changing
	magnetic flux:
	f. finding the self- and mutual inductance of symmetric configurations of
	conductors;
	g. finding the current and power as a function of time in a circuit with
	resistance and inductance;
	h. describing the oscillations of current and voltage in a circuit with
	capacitance and inductance.
Competency 8:	The Student will <u>demonstrate an understanding of alternating current</u>
	(AC) by:
	a. using the concept of root-mean-square averages in AC circuits;
	b. finding the resistance, reactance and impedance, of simple AC
	combinations of resistors, capacitors and inductors;
	c. explaining the wave nature of light using Maxwell's equations

	d. calculating the voltage, current and power in basic AC circuits;e. explaining resonance in an LRC series circuit;f. using the basic equations describing an ideal transformer.
Competency 9:	The Student will <u>demonstrate an understanding of Maxwell's equations</u> by:
	a . noticing the symmetry of the equations, and the presence of the displacement current;
	b. calculating the speed of light in vacuum from the electric and magnetic constants;
	c. using the Poynting vector to calculate the radiation flux;
	d. finding the radiation momentum and pressure.
Competency 10:	The Student will demonstrate an understanding of ray optics by:
	a. explaining the propagation of light in a homogeneous medium;
	b. using the laws of reflection and refraction of light at the boundary between two media;
	c. explaining total internal reflection;
	d. describing the images formed by plane and spherical mirrors;
	e. using the thin-lens equation to find the images formed by simple combinations of lenses.
Competency 11:	The Student will demonstrate an understanding of wave optics:
	a. explaining the wave interference patterns generated by thin films and narrow slits;
	b. finding the maxima and minima of interference created by two slits and finding the minima of diffraction created by a single slit;
	c. finding the maxima created by a diffraction grating;
	f. using the Rayleigh criterion to find the resolution limit;
	g. explaining polarization of light, and the effects of polarizers.