LEARNING TECHNOLOGY IN A COMMUNITY
Design Your Own Spring Break

Rhonda Berger and Patrick Nellis

An online speech instructor greets her class several times each week with a personalized video and screencast review of an assignment, a reminder, or sometimes just, “Hello, I hope all is well.” An English instructor has created animated characters to deliver reminders about deadlines and other course news. Another professor meets his class a couple of times each semester for virtual field trips in the 3D online world called Second Life. Twitter, blogs, Jeopardy games, and interactive Web pages are becoming commonly used tools for faculty in many face-to-face and online classes.

What do all these instructors have in common? They are all searching for engaging ways to enhance instruction for today’s students, and they have participated in a short-term Technology FLC at Miami Dade College, called Design Your Own Spring Break. This FLC was designed to equip faculty with current technology tools, empower them to use these tools to improve teaching, and build a supportive community for technology exploration. The FLC can be modified easily and reproduced at other two-year colleges and can be used as a vehicle for advancing technology, collegiality, and student learning. This FLC provides an opportunity for faculty to propose projects using new technologies to enhance instruction and get the time, tools, and support needed for creating learning innovations. It provides a respite and a renewal of sorts as participants learn, engage with one another, and experiment with new technologies in a nonthreatening and supportive atmosphere.
Instructors who participate typically display a renewed enthusiasm for being in the role of learner and have a desire to continue to explore and learn. As one member said after participating in the first seminar, “Now I want to improve, advance, and implement my new skills, after which I want to ‘return to the well’ for a wider range of content and skills.”

When the Technology FLC was first designed, it was conceptualized as a seminar; however, the structure, emphasizing faculty support and control, as well as the embedded peer collaboration and support, helped transform this annual event into an FLC. Faculty members who have participated have continued to support each other and provide innovative technology leadership. This kind of community and reciprocal mentoring is at the heart of any well-run FLC—even a short-term one.

This Technology FLC has demonstrated to the organizers that a successful faculty development program to encourage and facilitate the adoption of instructional technology is not built around a one-size-fits-all model. The themes that have emerged from our post-FLC surveys convince us that individualization matters. Participants in the FLC remarked on a variety of essential characteristics, including choice and a customized learning experience based on skill level; time, tools, and technical assistance; and recognition and support from the institution and colleagues.

Review of Literature

It has been nearly 15 years since Terry O’Banion (1997) published his manifesto on *A Learning College for the 21st Century*, which called for community colleges to meet the new demand for anytime, anyplace modes of instruction and learning. Two-year colleges are still struggling to realize this vision. These colleges are the point of access to higher education for those who need it most: minority, low-income, and first-generation college students, and workers in need of training for new skills. O’Banion called for the two-year college to create a new model of education, “one that incorporates the best practices and philosophies of its past with the expanding base of new knowledge about learning and technology” (p.47). Recently, the U.S. Department of Education (2010) called for “applying the advanced technologies used in our daily personal and professional lives to our entire education system to improve student learning,” (p. v). Community colleges, in particular, bear an enormous responsibility for meeting this goal because we educate half of all college students in the country—and our half is the group most in need
of technological skills, in part because of limited access in their homes and previous school experiences. As the League for Innovation documented in its study, *Access in the Information Age: Community Colleges Bridging the Digital Divide* (de los Santos, de los Santos, & Milliron, 2001), the community college is the best hope for our workforce to gain access to the jobs available in the new knowledge- and technology-based economy. The challenges addressed by a Technology FLC include how to use technology to teach content and familiarize students with new digital learning tools. For most of our faculty, the Technology FLC provides an exciting professional learning opportunity, and it can do this for faculty at other two-year institutions hoping to implement a similar FLC.

Two-year colleges across the country are adjusting to the wide-ranging changes that information technology is bringing to teaching and learning, and a new educational landscape is emerging. Professors from all disciplines are scrambling to learn new tools and to understand the changes technology is bringing to their disciplines. In a review of faculty development programs around the country, Moore, Fowler, and Watson (2007) identified several best practices for supporting and encouraging participation in faculty development that leads to change: implementing adult learning practices; offering incentives to participate; delivering workshops; using colleagues and peers; and providing ongoing support. These practices, combined with an atmosphere of trust and rewards for risk taking, will enable necessary and transformational changes to take place.

In addition to these features of effective faculty professional development, Yilmazel-Sahin and Oxford (2010) found that technology development models that integrate faculty choice and involve faculty directly in planning and implementing are the most effective in a broad comparative analysis of various studies and programs. While most research focuses on one model or a specific example of faculty development, this study organized seven faculty development models for integrating instructional technologies into three broad categories: workshops, mentoring, and university-school collaborations. According to these researchers, mentoring models and collaboration models were the most effective because they (a) involve faculty in the planning and implementation and choosing the technology skills to be acquired; (b) increase the comfort levels in using technology in their courses; (c) allow participants to develop skills at their own pace; and (d) offer individualized assistance and support.

The heavy investment in infrastructure to support the addition of instructional technology has not always translated into transformative educational models. This type of major overhaul is needed to meet the changing
needs of today’s students. Many faculty remain resistant to change. In addition, early adopters and those identified as mainstream technology users need training and support (Zayim, Yildirim, & Saka, 2006). Initial theories of acceptance and rejection of technology in education help explain reluctance to using technology, even today. Early adopters (EAs) favor revolutionary change, have a strong technology focus, and are seen as visionaries and risk takers (Rogers, 1995). Mainstream faculty (MF), on the other hand, favor evolutionary change, are problem-oriented, and are seen as conservative and risk avoiders.

In a study that classified faculty training needs by their technology competence, Zayim and colleagues (2006) found that early adopters and mainstream faculty have different needs in training and support. Mainstream faculty prefer formal training, while EAs prefer working with outside professionals and studying advanced topics. The EA group is more likely to consist of junior assistant professors in the 20- to 40-year-old age range who have significantly higher self-efficacy for computer use. Both EA and MF faculty in this study listed lack of reward structure and training opportunities as barriers to adoption, and the MF group listed lack of training at a slightly higher rate. The EA group was more likely to value outside resources such as outside consultants or vendor training, and the MF group rated one-on-one help as the most valuable. Both Baby Boomers and Gen-Xers populate higher education’s existing faculty ranks, and they have different needs and different expectations for training and support for instructional technology. The Technology FLC addresses this diversity of needs and expectations by offering a program that can be tailored to any skill level.

Other institutions have also developed successful Technology FLCs. Moore, Moore, and Fowler (2005) report that at Virginia Tech, the Faculty Development Institute has provided a continuous cycle of development and support at various levels for more than a decade. While early development consisted of programs to introduce technologies and reduce faculty anxiety, more recent programs address instant communication, social networking, and Web resources for use in classes. Participants gave positive feedback about the use of faculty facilitators and the important role they play in the overall success of the FLC. Beyond the technical help from the professional support trainers, faculty peers helped each other sort out ways to use technology to deepen learning. Faculty contributions to the institute included examples and personal narratives about implementation (Moore, Moore, & Fowler, 2005). Our FLC at Miami Dade College (MDC) has had similar positive results because of our use of faculty facilitators who not only deliver
training but also assist in the development labs, helping participants transform the new technology skills into instructional modules. Previous attendees often return as facilitators, adding a peer support richness to the technical assistance structure, thus transforming our short-term Design Your Own Spring Break experience into a collaborative FLC.

Learning to meet the needs of today’s technology-savvy students entails a pedagogical shift that requires reexamining the faculty role. While some Technology FLC participants embrace becoming learners as they discover and apply new instructional technologies, others need more guidance, training, and encouragement. Moreover, increasing expectations of faculty without providing them with adequate training and support can lead to poor results. The University of South Carolina’s Center for Teaching Excellence surveyed 197 faculty members and found that providing a variety of seminars, workshops, online and one-on-one trainings, and communities of practice all were valued, though this varied by individual (Crews, Miller, & Brown, 2009). The survey revealed barriers and challenges that included time constraints for preparing new lectures that integrate technology and for learning new technology to implement it effectively, and lack of knowledge about new and available technologies. A well-designed Technology FLC addresses many of the challenges identified in this review of literature by providing dedicated time for faculty to learn and develop a technology project of their choice, technology training and support during the event, and an ongoing community of practice centered around shared technology interests or disciplines.

Faculty Development and the Mission of the College

Faculty development is central to the two-year college teaching mission, and this is true at Miami Dade. The college invests in faculty training and seeks to spur creativity and innovation in teaching. Providing professional development for faculty is a crucial element in the MDC Strategic Plan, and professional development is also included in the faculty contract as a requirement to maintain faculty rank or to progress toward promotion. One of the areas where faculty development is quite needed is in the realm of technology, including, but not limited to, instructional design for online delivery methods. In 2002, the Learning Innovation initiative at MDC, a faculty-led program to support innovation at the college, recommended an intensive, project-based learning opportunity for faculty to occur during the week between spring and summer terms, and this began our Technology FLC.
Design of FLC

In 2003, MDC created a Design Your Own Spring Break Technology FLC. This FLC assisted faculty at various levels of expertise to complete a project of their choice and to receive the necessary training and one-on-one assistance during an intensive, collaborative experience.

In the years since, more than 240 participants have successfully completed the Technology FLC and created a variety of projects that have enhanced instruction at the college. Last year we offered 28 workshops and three development labs to serve 31 faculty members who participated in the community. Five trainers and seven lab technicians provided the one-on-one assistance as faculty designed their own training and development schedule. The sessions focused on new technologies such as lecture capture, virtual worlds learning opportunities, interactive online lessons, and collaborative Web 2.0 technologies. The event culminates each year in a showcase on the fourth day where participants share their learning and projects with each other, department chairpersons, and other academic leaders. Facilitators request audience feedback on each session in the showcase, which is eventually given to each presenter. One showcase participant said, “It is always amazing to watch the transformation of each faculty member from the often timid learner during the seminar to the confident and newly empowered instructor once they are on stage demonstrating their project.”

Any two-year college interested in designing a short-term Technology FLC should consider participants’ interests and needs. In our FLC, choice is central, from the initial project proposal through workshop selection and development time. Participants apply and propose a project that must be completed during the FLC and implemented by the following fall semester. When applying, faculty assess their current technology skill level and list the training they think they will need to complete their project. See Appendix A for a sample application form. An instructional designer reviews each project to ensure that it can be completed. Each year, FLC facilitators select 30 applicants, giving priority to first-time participants and attempting to balance campus and discipline representation. After that, selection is by lottery.

Early FLC cohorts included many participants who defined themselves as “technologically,” and projects were designed to meet their skill levels. These simple projects often included templates and easy-to-use tools. Projects have changed over the years, but the structure and the support for all skill levels continue. Participants are required to complete the training (including from three to 12 hours of workshops) and the original project that
was proposed, but most far exceed their own expectations and incorporate many other technologies as they are exposed to new tools and share ideas with colleagues. Participants typically are enthused and eager for more opportunities to learn new skills. An early participant in our FLC said, "The seminar was amazing! It provided me the opportunity to explore the latest technologies available at that time and ways to incorporate them into my curricula. I can only imagine what types of things are available now!"

Once selections are made, the technology team and FLC facilitators review the project and design the schedule. Since the Technology FLC is held during spring break, when classes are not in session, computer labs and other facilities are usually available. We reserve five computer labs and install special software to support the training and development requests. In addition, we hold concurrent training sessions in three labs on days one and two, and reserve day three for project development, with optional workshops as needed. Each hour-long workshop is hands on, with the focus on software, demonstration, and some guided instruction. After that, participants move to one of two development labs to get more practice and one-on-one assistance from the lab technicians. Last year, 28 workshops were held on a variety of Web 2.0 and interactive Web technologies. (See Appendix B for a sample of each day’s schedule.) The hosting campus’s support is crucial to assist with software installation and other technical support.

The culminating event of the week is the showcase. Participants present a short demonstration of their project, focusing on what they learned and how they will incorporate the project and new skills into instruction. In the first FLC cohort, the faculty members were asked to showcase their projects in small groups in different rooms. However, it soon became evident that the design of the showcase needed to change to one large event as participants were anxious to see and share their projects with everyone. Sharing accomplishments during the showcase continues to be a highlight of the event. Invitations are sent to other faculty, chairpersons, and academic leaders at the college. Each year this event has grown and has become an ever more popular venue for sharing and celebrating teaching and learning. Often the chairperson wants more faculty in his or her department to see what was presented at the showcase, so many FLC members present their projects again at departmental meetings.

Projects

In the earliest days of the FLC, many projects consisted of the faculty member’s first Web page and links to resources on the Web for their students.
Others used the animation tools in PowerPoint and learned how to create interactive presentations that went way beyond sliding bullets. Other PowerPoint projects included the creation of *Jeopardy* games and other interactive game-show-style activities on topics such as writing skills, biology, math, and more. Participants created animated and multimedia presentations on a range of topics, from famous plays, symbolism, and parabola equations in the real world, to Cannibal Island, an interactive task-based project that predated the television show *Survivor*. Recent seminars have focused on emerging and Web 2.0 technologies. Five examples of technologies that participants have used recently are described below.

Web 2.0 Technologies

One recent participant set a goal to explore collaborative and other emerging technologies that would work for her English as a Second Language (ESL) students. She explored a variety of tools and created several projects, including a humorous Xtranormal video that introduces students to the speech lab requirements with the use of animated characters. “This is something I cover over and over in class. Now I will send it out to be viewed as homework. I’ll be curious to know if two cartoons saying the same thing I go over and over might hold their attention more.” She also created a Jing screen capture orientation to her course in the learning management system used at the college.

Lecture Capture

Several participants have used the Panopto lecture capture software to capture video, PowerPoint, and/or screen images. One professor created a lecture on memoir writing focusing on the book *Tuesdays with Morrie*. She uses this lecture in her face-to-face, blended, and fully online courses. Students can view it as many times as needed and use the search function to review certain topics as they prepare to write their own memoirs. She has noticed improved scores on test answers related to this lecture.

SoftChalk Interactive Web Pages

The last Technology FLC introduced SoftChalk, an authoring tool for developing engaging online content. This software allows faculty to create content and exercises that can be embedded in online lesson pages or uploaded to the learning management system grade book. Online learning material developed using this tool can be used to supplement classroom work or for
distance-learning courses. SoftChalk provides an engaging way to present lessons and a variety of tools to create practice activities to reinforce retention, including puzzles, drag-and-drop activities, matching, and more. FLC projects using this authoring tool included a lesson on medical errors for medical students; an interactive tutorial on APA style developed by a librarian; and activities for language learning with immediate feedback.

Second Life
Many colleges have created their own space or island for exploring and using this 3D virtual world for instructional purposes. Miami Dade College has created MDC Island, which consists of virtual classroom space, meeting areas, and learning tools. A faculty librarian created an activity to introduce visitors to the Sistine Chapel, all connected to the MDC Island. She also created a field trip kit to help visitors to our island transport to Vassar College’s Second Life version of the Sistine Chapel and provided information and resources such as notecards and YouTube videos. Vassar College’s realistic 3D reproduction of the Sistine Chapel is a popular Second Life destination. The 2010 participant commented about the benefit of this technology: “[I]n some ways [it is] better than visiting the real thing because in Second Life you can actually fly and get a real close-up view of the painting.”

Tablet and Mobile Computing
The FLC has helped faculty develop ideas for using the iPad, tablet, and mobile devices. Participants use SoftChalk and other tools to develop lessons using these devices. The FLC facilitators realize that this is a growth area and will require attention for future FLC cohorts.

Evaluation
The Technology FLC has expanded technology-based teaching innovations across the college. This model has proven to be a reliable vehicle for professional development. The overall quality of the seminar was rated as “excellent” by 95% of last year’s participants. Most either strongly agreed (91%) or agreed (9%) that they were able to demonstrate expertise in at least three new technologies and apply new skills in a learning module. Incorporating feedback from peers, discipline experts, and technology coaches into their final projects was seen as significant by 86% of the respondents. Although data have not been collected on overall effectiveness of the FLC on student
learning directly, many faculty have reported improved performance as a result of something they learned or created. One FLC participant, a biology professor, said, "I also created an assignment in VoiceThread for my students. After starting to use this assignment to teach students about different types of cells, their grades on this specific component of the course have improved."

Recognition for the MDC Technology FLC was not simply institution-wide. The Chronicle of Higher Education's 2010 Great Colleges to Work for Survey named MDC and indicated that the Technology FLC was one of the reasons the college received high marks (Mangan, 2011). Internal endorsements as well as external recognition promote the FLC and make sure that the college commitment to the FLC remains strong.

Resources Needed

Whereas many other types of FLCs can be implemented fairly inexpensively, a Technology FLC will require considerable resources. The FLC’s biggest expense is connected to personnel. The key features of the experience are the extensive training, instructional design, and technical support. MDC assigns all technical training and design staff in its College Training and Development Department to the weeklong Technology FLC. Our FLC requires three to four trainers/instructional designers and seven lab technicians to staff three concurrent workshop tracks and three development labs. Additionally, other trainers have been hired for two or three training sessions when special expertise is required. Technical personnel at the campus often assist with software installation and other support, including any network or media issues that might arise. We have found that the best participant-to-support personnel ratio is 3:1. Another expense is compensation for the members, who receive $500 for their participation. Lunch and breaks are also required for participants and personnel for the week. The final showcase session usually includes coffee and continental breakfast for participants and guests. Any college adapting this FLC will have to have sufficient lab and space facilities—for example, we use five labs to allow for concurrent sessions and breakouts.

This model could be adapted and a similar FLC built on a smaller scale at a lower cost. Faculty facilitators and media support personnel could be asked to volunteer, and fewer projects and participants could also cut down on costs of training, stipends, and food. As long as faculty can propose and
create their own learning path, get the time and support needed, and work together, this vibrant FLC could work in a scaled-down format.

Community Building: Recognition and Support

One of the unexpected outcomes of this project was the informal FLCs that occurred during the event and continued beyond the seminar. On the first day, small groups of four to five participants with similar projects meet with an instructional designer who assists in recommending a training plan. During the seminar, faculty spend many hours together in the labs and often group together and seek each other out for assistance and support because the labs are also divided up by project type. This cross-disciplinary interaction often is cited as a seminar highlight. One participant responded: “It [the cross-disciplinary interaction] is vital; it’s very helpful to see what other instructors have already tried and what worked or did not work well; it is also helpful to hear suggestions from colleagues about what tools/methods work best in their classrooms.” Another participant added, “I always welcome the opportunity to meet and hear from faculty teaching in other disciplines. I teach ESL, and talking to my colleagues in the disciplines helps me get a sense of what my students will be facing after they leave our ESL program. I also hear from them about how our former students are doing in their programs.”

Another facet of the community created by participation is the fact that the culture of technology collaboration spreads beyond the participants. Members often finish the FLC and become technology leaders in their departments and continue to share their enthusiasm and technology skills with their colleagues. One such participant said, “Now, thanks to the seminar, I am a member of the technology committee, and we are organizing a symposium for our colleagues. Also I have shared a lot of information in the science retreat.” Members of the FLC often become informal trainers for their peers and teach others how to use some of the innovative learning technologies they have discovered. “I have taught many of my colleagues how to use Delicious.com. Overall I think this experience really helps keep faculty up to date regarding technology. Technology moves very quickly so it is important for faculty to share with each other what they know. It helps us all stay ‘updated.’”

Closing Thoughts: Spring Break as a Pilgrimage

A short-term Technology FLC creates a temporary community that is outside of the normal college work structures. Faculty members are freed from
their regimented schedules, and they leave their roles as teachers in order to become learners again, able to follow their own vision for new ways to use technology to engage students. In many ways the experience approximates the anthropological concept of “communitas,” which denotes a temporary sense of community outside the normal social structure in which participants enjoy an equality that is not present in daily affairs (Turner, 1974). For instance, during this FLC, normal roles are reversed as faculty become students, and all participants interact as equals, without concern for degree, rank, discipline, or other status markers. The instructional designers and lab technicians are the guides on this faculty pilgrimage to find new ways to teach, which is ultimately a quest for renewed interest and commitment to the profession. It would be hard to imagine sustaining a long career as a two-year college professor without opportunities like the Technology FLC to create a time out of the normal structure—a time to learn instead of teach. The formal showcase event that provides the endpoint to the journey follows all of the normal academic presentation rituals and allows faculty to share their vision for new teaching techniques in their own courses, display what they have brought back from the pilgrimage to invigorate their practices, and reenter the everyday college structure of teaching and learning.

References

APPENDIX A
Design Your Own Spring Break 2010

Application due by

Technology-Enhanced Lesson

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department:</td>
<td>Email</td>
</tr>
<tr>
<td>Chairperson (for Showcase Invitation)</td>
<td></td>
</tr>
</tbody>
</table>

Campus:
Lesson or Project Title:
Lesson Description (describe what the lesson entails and what technology will be used to enhance this lesson):

Lesson Objectives (At the end of this lesson, my students will be able to. . .) (please list two or three):

Lesson Assessment Plan (How will you assess the students’ learning of the lesson?): Although this may not be part of the actual project, the application needs to indicate how the learning will be assessed.

Which of the MDC Learning Outcomes does your lesson plan address?
What Course Competency will your lesson plan address?
How will the project benefit student learning?

Describe type(s) of technologies the lesson needs:
How will the seminar expand your learning in terms of applying technology skills in instruction?

Training Plan: What skills (workshops) do you need to learn to complete the project?
Check your current technology level. Necessary prerequisite skills will depend on the scope of the project. All skill levels are welcome.

<table>
<thead>
<tr>
<th>I have basic Web skills.</th>
<th>I have created a Web page.</th>
<th>I use email with students.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I use the Internet with students.</td>
<td>I use PowerPoint in my class.</td>
<td>I use graphics software.</td>
</tr>
<tr>
<td>I use ANGEL.</td>
<td>I have created a Podcast.</td>
<td>I have used Second Life.</td>
</tr>
<tr>
<td>I have used social media (Blog, Wiki, Twitter, Facebook) application(s) in my instruction—for example:</td>
<td>I have created interactive activities for students using Studymate, Hot Potatoes, or other applications.</td>
<td>I have used Panopto, Lecture Capture, or other screen capture applications.</td>
</tr>
</tbody>
</table>

Other technology skills:

If you have created a Web page, please provide the Web address:

Have you attended a Spring Break Seminar before?

Have you attended more than once before?
APPENDIX B

Sample Schedule of Supporting Workshops

<table>
<thead>
<tr>
<th>Day One</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 am–12:15 pm</td>
<td>Introduction Demonstrations Individual Consultations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:15 pm–1:00 pm</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 1</td>
<td>Room 2</td>
<td>Room 3</td>
<td></td>
</tr>
<tr>
<td>1:00 pm–2:00 pm</td>
<td>Interactive PowerPoint SoftChalk 1 Jing Screen Capture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 pm–3:15 pm</td>
<td>Instructional Games SoftChalk 2 Lecture Capture 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30 pm–4:30 pm</td>
<td>Prezi Presentations Twitter in the Classroom Lecture Capture 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day Two</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 am–9:45 am</td>
<td>Learning Objects 1 SoftChalk 1 Lecture Capture 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 am–11:00 am</td>
<td>Learning Objects 2 SoftChalk 2 Second Life Overview</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15 am–12:15 am</td>
<td>Finding Free Images Xtranormal Camtasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:15 pm–1:00 pm</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00 pm–2:00 pm</td>
<td>Finding Podcasts Google Docs ANGEL Assessments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:15 pm–3:15 pm</td>
<td>Web 2.0 Google Sites StudyMate Games</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30 pm–4:30 pm</td>
<td>Prezi Presentation Free Tools YouTube Channels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day Three</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 am–9:45 am</td>
<td>Optional iPad Demo</td>
<td></td>
</tr>
<tr>
<td>8:45 am–4:30 pm</td>
<td>Development Lab Development Lab</td>
<td></td>
</tr>
</tbody>
</table>