MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the equation.

1) \(8x - (3x - 1) = 2\)
 A) \(-\frac{1}{5}\)
 B) \(\frac{1}{11}\)
 C) \(-\frac{1}{11}\)
 D) \(\frac{1}{5}\)

2) \(4(3x - 1) = 16\)
 A) \(\frac{5}{3}\)
 B) \(\frac{17}{12}\)
 C) 1
 D) \(\frac{5}{4}\)

3) \((y - 5) - (y + 6) = 7y\)
 A) \(-\frac{11}{7}\)
 B) \(-\frac{11}{5}\)
 C) \(-\frac{1}{7}\)
 D) \(-\frac{11}{3}\)

4) \(4p = 8(4p + 5)\)
 A) \(-\frac{10}{7}\)
 B) 10
 C) \(\frac{7}{10}\)
 D) \(\frac{10}{7}\)

5) \(\frac{f}{7} - 5 = 1\)
 A) -42
 B) 28
 C) 42
 D) -28

6) \(\frac{2x}{5} - \frac{x}{3} = 2\)
 A) -30
 B) 60
 C) -60
 D) 30

7) \(\frac{3}{10}x + \frac{4}{5} = \frac{1}{5}x\)
 A) 10
 B) -10
 C) -8
 D) 8

8) \(\frac{a}{4} - \frac{1}{4} = -4\)
 A) 15
 B) -17
 C) 17
 D) -15

9) \(\frac{b}{12} - 4 = -2\)
 A) -24
 B) 26
 C) -26
 D) 24
10) \(\frac{4(7 - x)}{3} = x \)

A) \(\frac{28}{5} \)
B) 4
C) -4
D) 7

Solve.

11) Three times a number, added to -2, is -20. Find the number.

A) -6
B) -18
C) -54
D) 6

12) Eight times a number, added to -7, is 1. Find the number.

A) 8
B) -1
C) 64
D) 1

13) You have taken up gardening for relaxation and have decided to fence in your new rectangular shaped masterpiece. The length of the garden is 10 meters and 56 meters of fencing is required to completely enclose it. What is the width of the garden?

A) 5.6 m
B) 560 m
C) 36 m
D) 18 m

14) Use the formula \(F = \frac{9}{5}C + 32 \) to write 70° C as degrees Fahrenheit.

A) 94° F
B) 57° F
C) 21.4° F
D) 158° F

15) \(d = rt; \ t = 9, \ d = 27 \)

A) 36
B) 0.3
C) 3
D) 18

16) \(P = 2L + 2W; \ P = 30, \ W = 6 \)

A) 24
B) 12
C) 9
D) 15

Solve the equation for the indicated variable.

17) \(P = 2L + 2W \) for \(L \)

A) \(L = \frac{P - W}{2} \)
B) \(L = P - 2W \)
C) \(L = P - W \)
D) \(L = \frac{P - 2W}{2} \)

18) \(A = P + PRT \) for \(T \)

A) \(T = \frac{PR}{A - P} \)
B) \(T = \frac{A - P}{PR} \)
C) \(T = \frac{P - A}{PR} \)
D) \(T = \frac{A}{R} \)