Miami Dade College -- North Campus Mathematics Department Review For Final Exam MAT 1033

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Factor	compl	letely.
--------	-------	---------

1)
$$343y^3 - 1000$$

1) _____

2)
$$27c^3 + 125$$

2) _____

Find the slope-intercept form of the equation of a line with the given slope that passes through the given point.

3) _____

4) Slope
$$\frac{2}{5}$$
, through $(5, 2)$

4) _____

Solve the literal equation for the specified variable.

5)
$$4x + 9y = 4$$
 for y

5) _____

Solve for the specified letter.

6)
$$R = nE - nr$$
, for n

6) _____

Simplify the expression.

7) _____

$$8)\ 32-4/5$$

8) _____

Solve.

9)
$$3x^2 + 12x = -1$$

9) _____

Solve by using the quadratic formula.

10)
$$x^2 + x + 8 = 0$$

10) _____

Find the slope of the line containing the given pair of points. If the slope is undefined, state so.

11) _____

12) _____

Rationalize the denominator. Assume all variables represent positive numbers.

13)
$$\frac{\sqrt{6}}{6\sqrt{5} - \sqrt{6}}$$

13) _____

Rationalize the denominator.

14)
$$\frac{\sqrt{5} + 9}{\sqrt{3} - 5}$$

14) _____

Simplify the radical expression. Assume all variables represent nonnegative real numbers.

15)
$$\sqrt[3]{64a^8b^5}$$

15) _____

$$_{16)} \sqrt[6]{x^6y^{11}z^3}$$

16) _____

Solve. Check for extraneous solutions.

17)
$$\sqrt{6x-5}=5$$

17) _____

18)
$$\sqrt{x+3} = x-3$$

18) _____

19) _____

20) _____

Solve using any appropriate method. If the system has an infinite number of solutions, use set -builder notation to write the solution set. If the system has no solution, state this.

21)
$$4x + 8y = 40$$

22) y = 9x + 186x + 2y = -36 21) _____

$$5x + 4y = 8$$

22) _____

23)
$$\frac{3x}{x^2 - 5x + 6} - \frac{12}{x^2 - 6x + 8}$$

23) _____

24)
$$\frac{m-5}{m^2-3m-4} + \frac{4m+5}{m^2+3m+2}$$

24) _____

Divide.

25)
$$(9 \,\mathrm{m}^2 + 19 \,\mathrm{m} - 24) \div (\mathrm{m} + 3)$$

25) _____

26)
$$\frac{7 r^3 - 27 r^2 - 34 r - 30}{r - 5}$$

26) _____

27) **Simplify.**
$$\frac{\sqrt{3}}{3} + \frac{1}{\sqrt{3}}$$

27) _____

28) Simplify. $\frac{\sqrt{18}}{6} + \sqrt{\frac{1}{2}} + \frac{\sqrt{2}}{2}$

28) _____

29) **Solve.** $\frac{a+4}{a^2+5a} = \frac{-2}{a^2-25}$

29) _____

30) **Solve.** $\frac{t+3}{t^2-2t} = \frac{10}{t^2-4}$

30) _____

31) Simplify. $\frac{4 - \frac{1}{x^2}}{4 + \frac{4}{x} + \frac{1}{x^2}}$

31) _____

32) Simplify. $\frac{2 + \frac{5}{a} - \frac{3}{a^2}}{2 - \frac{5}{a} + \frac{2}{a^2}}$

32) _____

33) Simplify. $\frac{a^{\frac{3}{4}}b^2}{a^{\frac{7}{8}}b^{\frac{1}{4}}}$

33) _____

34) Simplify. $\frac{a^{\frac{1}{3}}b^4}{a^{\frac{3}{5}}b^{\frac{1}{3}}}$

34) _____

35) Solve algebraically.

35) _____

Jim and Jill go out to dinner, which cost them 64.25. The cost includes 8.5% sales tax and a 20% tip. What was the price of the dinner?

36) Solve algebraically.

36) _____

Fran takes Paul out to a restaurant on his birthday. She got a bill of \$52.65, which included a 7% sales tax and a 10% tip. What was the cost of the meal?

Graph on a plane.

37)
$$2x + 4y \ge -8$$

38)
$$x + y < -3$$

39) Solve.	39)

One end of a wire is attached to the top of a 24-foot pole; the other end of the wire is anchored to the ground 18 feet from the bottom of the pole. If the pole makes an angle of 90° with the ground, find the length of the wire.

Two children are trying to cross a stream. They want to use a log that goes from one bank to the other. If the left bank is 5 feet higher than the right bank and the stream is 12 feet wide, how long must a log be to just barely reach?

Answer Key

Testname: FINAL REVIEW MAT 1033

1)
$$(7y - 10)(49y^2 + 70y + 100)$$

2)
$$(3c + 5)(9c^2 - 15c + 25)$$

3)
$$y = -5x - 34$$

4)
$$y = \frac{2}{5}x$$

5)
$$y = \frac{-4x + 4}{9}$$

$$6) n = \frac{R}{E - r}$$

7)
$$\frac{1}{512}$$

8)
$$\frac{1}{16}$$

9)
$$\frac{-6 \pm \sqrt{33}}{3}$$

$$10) \left\{ \frac{-1 \pm i\sqrt{31}}{2} \right\}$$

11)
$$-\frac{2}{5}$$

12)
$$\frac{2}{9}$$

13)
$$\frac{1}{29} (\sqrt{30} + 1)$$

14)
$$\frac{\sqrt{15} + 45 + 9\sqrt{3} + 5\sqrt{5}}{-22}$$

15)
$$4a^2b\sqrt[3]{a^2b^2}$$

16)
$$xy \sqrt[6]{y^5z^3}$$

19)
$$w = 4$$
 in., $l = 11$ in.

20)
$$b = 6$$
 ft., $h = 12$ ft.

$$23) \, \frac{3(x-6)}{(x-3)(x-4)}$$

$$24) \frac{5 m^2 - 14 m - 30}{(m+1)(m-4)(m+2)}$$

26)
$$7r^2 + 8r + 6$$

27)
$$\frac{2\sqrt{3}}{3}$$

$$28)\,\frac{3\sqrt{2}}{2}$$

$$30)$$
 a = 4

$$31) \, \frac{2x - 1}{2x + 1}$$

$$32) \frac{a+3}{a-2}$$

33)
$$\frac{b^{\frac{1}{4}}}{a^{\frac{1}{8}}}$$

$$34) \frac{b^{\frac{11}{3}}}{a^{\frac{4}{15}}}$$

38)

39) 30 feet