Course Competency

Competency 1: The student will demonstrate an understanding of the development of Internet of Things (IoT) products by:

1. Explaining the IoT Business Value Proposition.
2. Defining the features of an Internet of Things product.
3. Describing the different developers boards (such as Arduino Uno and Raspberry Pi) available and comparing their strengths and weaknesses.
4. Listing the strengths and weaknesses of the different programming languages (such as C, C#, Java) used for programming IoT devices with Python.
5. Identifying what are the challenges of IoT security and privacy.

Learning Outcomes

- Critical thinking

Course Competency

Competency 2: The student will demonstrate an understanding of how to setup, boot and run a program on a development board (such as Raspberry Pi) by:

1. Manipulating a development board to set it up.
2. Configuring the wiring necessary to boot the board and connect it to an external display.
3. Performing the Booting and the installation of the Operating Systems (OS) (Such as Raspbian or Windows IoT core) in the board.
4. Modifying the user parameters of the OS running on the board through the graphical user interface (GUI) and the shell.

Learning Outcomes

- Computer / Technology Usage
<table>
<thead>
<tr>
<th>Competency 3: The student will demonstrate an understanding of an Integration Development Environment (IDE) by:</th>
<th>Computer / Technology Usage</th>
</tr>
</thead>
</table>
| 1. Utilizing IDLE and the tools necessary to build an app that can run on a development board.
2. Creating an app that will perform a numerical calculation when the user press a button, and deploying it to a development board. | |

| Competency 4: The student will demonstrate an understanding of how to write and execute programs in a language, such as Python by: | Numbers / Data
Critical thinking
Computer / Technology Usage |
|---|---|
| 1. Using appropriate data types.
2. Defining and using objects.
3. Using functions and defining the function’s arguments.
4. Using flow control statements.
5. Using modules, classes and methods.
6. Using I/O functions to read/write files from the hard drive and accessing the internet. | |

<table>
<thead>
<tr>
<th>Competency 5: The student will design an app with a Graphical User Interface (GUI) by:</th>
<th></th>
</tr>
</thead>
</table>
| 1. Utilizing a GUI (such as Tkinter) to design how the user will interact with the program.
2. Creating a list with all the variables, input and output methods needed for the particular program.
3. Writing a program which demonstrate the use of different views and widgets (such as button, canvas, check button, frame, menu, etc.). | |

| Competency 6: The student will demonstrate an understanding of how to interface with the hardware by: | Critical thinking
Computer / Technology Usage |
|---|---|
| 1. Describing the use or GPIO pin connections in developer boards (such as Raspberry Pi and Arduino UNO), and identifying the pin functions, serial interface pins, power pins and hat pins.
2. Connecting the breadboard to the GPIO pins and turning on an LED with a program. | |
Course Competency 7: The student will demonstrate an understanding of how to use socket in Python to act as both a client and a server by:

1. Researching about the basic networking concepts (such as network, secure Shell, SSH Client/Server) and Internet Protocols (IP addresses, Domain Names, Client/Server).
2. Describing the functions of a socket, how to send and receive data, exceptions and server codes.
3. Writing a program that runs on a development board (such as Raspberry Pi) that sends and receives data from the internet.

Course Competency 8: The student will demonstrate an understanding of how to use cloud services and data analytics with development boards (such as Raspberry Pi) by:

1. Defining client and server and listing their characteristics.
2. Installing Apache on a development board.
3. Creating a static web page hosted in the development board.
4. Using an API to communicate the development board with Twitter, Instagram, Tumblr, etc.

Course Competency 9: The student will demonstrate an understanding of how to prototype devices that have internet connection capabilities by:

1. Estimating the effect of location, movement, power consumption, cost, and data on the product.
2. Describing WiFi, Bluetooth, cellular modem, ZigBee/Z-wave, Near Field Communication (NFC), and iBeacon.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Defining HTML, HTTP and web server.</td>
</tr>
<tr>
<td>4.</td>
<td>Modifying sample programs that use the development board as a web server.</td>
</tr>
<tr>
<td>5.</td>
<td>Modifying sample programs that use the development board as a web browser using ifttt.com.</td>
</tr>
</tbody>
</table>