CIS 3360 Principles of Information Security

This upper division course provides an overview of information systems security principles, practices, methods, and tools. Students will learn about the threats against an organization’s digital assets, as well as the tools and methods to mitigate those threats. Topics include cryptography, authentication and access control systems, infrastructure security, and ethical issues. (3-hour lecture 1 hour lab)

<table>
<thead>
<tr>
<th>Course Competency</th>
<th>Learning Outcomes</th>
</tr>
</thead>
</table>
| **Competency 1:** The student will demonstrate an understanding of the information security concepts by: | • Critical thinking
• Computer / Technology Usage |
| 1. Distinguishing among the main security goals (confidentiality, integrity, and availability).
2. Interpreting the authenticity and accountability security goals.
3. Applying the generally accepted security principles (including defense-in-depth, least privilege, economy of mechanism, open design, separation of privilege).
4. Categorizing countermeasures (technical vs. administrative, and preventive vs. detective vs. corrective). | |
| **Competency 2:** The student will demonstrate an understanding of the diversity of potential attacks against an organization by: | |
| 1. Analyzing social engineering techniques.
2. Researching eavesdropping attacks.
4. Discussing session hijacking attacks.
5. Comparing the different types of password attacks.
6. Evaluating Denial of Service (DOS) attacks and Distributed Denial of Service (DDOS) attacks.
7. Comparing and contrasting software exploitation attacks (buffer overflow, SQL injection, Cross-Site Scripting (XSS) attacks). | |

Updated Spring 2021
8. Describing traffic analysis.
9. Categorizing malware (viruses, worms, bots, Trojan Horse, rootkits).
10. Discussing the typical cyber-attack phases (Reconnaissance, Scanning, Gaining access, Maintaining Access, Covering Tracks).

Competency 3: The student will demonstrate an understanding of cryptographic techniques by:

1. Implementing security controls using hashing algorithms.
2. Implementing security controls using secret key cryptographic primitives.
3. Implementing security controls using various modes of encryption.
4. Implementing security controls using public key cryptographic primitives.
5. Comparing various cryptographic algorithms (DES, 3DES, AES, Diffie-Hellman, RSA, HMAC ...).
6. Assessing key distribution and management techniques (Public Key Infrastructures, Kerberos, x.509 certificates, PGP certificates).

Competency 4: The student will demonstrate an understanding of authentication methods by:

1. Using passwords as an authentication method.
2. Using biometrics as an authentication method.
3. Using cryptography primitives to implement authentication methods.
5. Designing multi-factor authentication techniques.

Competency 5: The student will demonstrate an understanding of access control systems by:
1. Employing various models of access control (Discretionary access control (DAC), Mandatory Access Control (MAC), Role-based Access control (RBAC), the access matrix, and multilevel models).
2. Designing and implementing a file systems access control policy.
3. Examining network access control techniques.

Competency 6: The student will demonstrate an understanding of various network security controls by:

1. Explaining the role of firewalls and the demilitarized zone (DMZ).
2. Contrasting different types of intrusion detection systems.
3. Describing honeypots and honeynets.

Competency 7: The student will demonstrate an understanding of the legal, ethical, and professional issues in information security by:

1. Distinguishing between unethical and illegal behavior in information security.
2. Identifying major national laws that relate to the practice of information security.
3. Discussing legal, ethical, and professional issues in information security.