CHM1025 Practice Questions - Chapters 6, 7 \& 8

Chapter 6

1. What is the mass of 4.91×10^{21} platinum atoms in grams?
2. Determine the number of moles $O R$ the mass of the following:
a. 4.25 kg carbon dioxide
b. 1.89 kmol sulfur trioxide
3. How many grams of Cl are in 55.0 g of the following CFCs?
a. $\mathrm{CF}_{2} \mathrm{Cl}_{2}$
b. $\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{Cl}_{3}$
4. Calculate mass percent composition of C :
a. $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}$
b. $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$
5. Calculate:
a. Molecular formula from the empirical formula CH_{2}, with a molar mass of $56.11 \mathrm{~g} / \mathrm{mol}$
b. Empirical formula for a compound that, when decomposed, produces 1.78 g of N and 4.05 g of O .

Chapter 7

1. Which of the following is not a redox reaction?
a. $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \quad 2 \mathrm{MgO}(\mathrm{s})$
b. $2 \mathrm{HBr}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CaBr}_{2}(\mathrm{aq})$
c. $\mathrm{Ca}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})$ $\mathrm{CaCl}_{2}(\mathrm{~s})$
d. $\mathrm{Zn}(\mathrm{s})+\mathrm{Fe}^{2+}(\mathrm{aq})$ $\mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Fe}(\mathrm{s})$
2. Balance the chemical equation: $\mathrm{Fe}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq})$
$\mathrm{FeCl}_{3}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
3. Precipitation reactions are best classified as which type of reaction?
a. Single displacement
b. Double displacement
c. Decomposition
d. None of the above
4. Which of the following is not a strong acid?
a. HClO_{4}
b. HF
c. HNO_{3}
d. HBr
5. Which of the following compounds is insoluble?
a. AgBr
b. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
c. NaF
d. CaCl_{2}

Chapter 8

1. What is the percent yield for a process in which 10.4 g CH 33 OH reacts with excess O_{2} forming $10.1 \mathrm{~g} \mathrm{CO}_{2}$ forms, according to the following equation?

$$
2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \quad 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

a. 97.1%
b. 70.7%
c. 52.1%
d. 103%
e. $37.9 \%=$
2. Nitrogen and hydrogen react to form ammonia according to the following balanced equation: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad 2 \mathrm{NH}_{3}(\mathrm{~g})$. Calculate the number of moles of hydrogen required to react with 0.0880 mole of nitrogen, and the number of moles of ammonia that will form.
3. What mass of CaSO_{4} is produced according to the given equation when 5.00 g of each reactant are combined?

$$
\mathrm{CaF}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HF}(\mathrm{~g})
$$

a. $\quad 10.0 \mathrm{~g}$
b. 11.6 g
c. 6.94 g
d. 8.72 g
e. 5.02 g
4. Given the thermochemical equation: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{I})-->2 \mathrm{HBr}(\mathrm{g}), \Delta \mathrm{H}=-72.4 \mathrm{~kJ} / \mathrm{mol}$, calculate the amount of heat released when a kilogram of $\mathrm{Br}_{2}(\mathrm{I})$ is consumed in this reaction.
a. $7.24 \times 10^{4} \mathrm{~kJ}$
b. 453 kJ
c. 906 kJ
d. 227 kJ
e. 724 kJ

Answer Key:
Chapter 6

1. 1.59 g
2.

a. 96.6 mol
b. $1.51 \times 10^{5} \mathrm{~g}$
3.
a. 32.3 g
b. 31.2 g
4.
a. 54.5%
b. 60.9%
5.
a. $\mathrm{C}_{4} \mathrm{H}_{8}$
b. NO_{2}

Chapter 7

1. B
2. $2 \mathrm{Fe}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \quad 2 \mathrm{FeCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
3. B
4. B
5. A

Chapter 8

1. B
2. $0.264 \mathrm{~mol} \mathrm{H}_{2}, 0.176 \mathrm{~mol} \mathrm{NH}_{3}$
3. C
4. B
