\qquad

Graph the function on the indicated interval, using a solid line. Then graph the inverse, using a dashed line.

1) $y=\cos x, 0 \leq x \leq \frac{\pi}{2}$

A)

C)

B)

D)

2) State the domain and the range of the inverse sine function, and graph the function using at least 3 key points.

Domain:

Range:

Key Points:

3) State the domain and the range of the inverse cosine function, and graph the function using at least 3 key points.

Domain:

Range:

Key Points:

4) State the domain and the range of the inverse tangent function, and give the equations of the asympmtotes. Graph the function using at least 3 key points.

Domain:

Range:

Equations of asymptotes:

Key Points:

Find the exact value of y in radians.
5) $y=\sin ^{-1}(-0.5)$
6) $y=\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)$

Give the value of the function in radians. Round your answer to three decimal places.
7) $\sin ^{-1}-0.7153$
8) $\cos ^{-1}-0.4102$
9) $\tan ^{-1}-0.6634$

Solve.
10) An airplane is flying at an altitude of 2600 ft toward an island. The straight line distance from the airplane to the island is d feet. Express θ, the angle of depression, as an inverse sine function.

A) $\theta=\sin ^{-1} \frac{\sqrt{d^{2}-6,760,000}}{d}$
B) $\theta=\sin ^{-1} \frac{\mathrm{~d}}{2600}$
C) $\theta=\sin ^{-1} \frac{d}{\sqrt{d^{2}-6,760,000}}$
D) $\theta=\sin ^{-1} \frac{2600}{d}$

Give the degree measure of θ.

11) $\theta=\arcsin \left(-\frac{1}{2}\right)$

Evaluate.

12) $\cos ^{-1}\left(\cos \left(-\frac{\pi}{3}\right)\right)$
13) $\cos ^{-1}\left(\cos \left(\frac{\pi}{5}\right)\right)$
14) $\sin ^{-1}\left(\sin \left(\frac{6 \pi}{5}\right)\right)$
15) $\tan ^{-1}\left(\tan \left(-\frac{3 \pi}{4}\right)\right)$
16) $\sin ^{-1}\left(\cos \frac{2 \pi}{3}\right)$

Evaluate the expression.
17) $\sin (\arctan 2)$
18) $\cos \left(\arcsin \frac{1}{4}\right)$

Evaluate.
19) $\cos \left(\tan ^{-1} \sqrt{3}\right)$

Solve the equation for the interval $[0,2 \pi)$.
20) $2 \sin ^{2} x=\sin x$
21) $\sin ^{2} x-\cos ^{2} x=0$

Determine all solutions of each equation in radians in the interval $[0,2 \pi)$.
22) $\cos ^{2} x-\cos x=0$

Solve the equation for solutions in the interval $\left[0^{\circ}, 360^{\circ}\right)$.
23) $\sin 2 \theta=-\frac{1}{2}$
24) $\cos 2 \theta=\frac{\sqrt{3}}{2}$

Solve the triangle, if possible. Give the length of side a. Round the answer to 2 decimal places.
25) $B=18.5^{\circ}$

$$
\begin{aligned}
& C=110.0^{\circ} \\
& b=13.85
\end{aligned}
$$

$\mathrm{a}=$ \qquad

Solve the triangle, if possible. Round to the nearest hundredth.

$$
\text { 26) } \begin{aligned}
B & =17.4^{\circ} \\
b & =5.97 \\
a & =6.65
\end{aligned}
$$

27) $B=86.5^{\circ}$
$b=7.86$
$\mathrm{a}=15.5$

Solve.

28) To find the distance $A B$ across a river, a distance $B C$ of 815 m is laid off on one side of the river. It is found that B $=108.2^{\circ}$ and $\mathrm{C}=14.1^{\circ}$. Find AB .
29) A ranger in fire tower A spots a fire at a direction of 40°. A ranger in fire tower B, which is 28 miles directly east of tower A, spots the same fire at a direction of 330°. How far from tower A is the fire?

Find the area of triangle.

30) $\mathrm{C}=48.3^{\circ}, \mathrm{b}=85 \mathrm{ft}, \mathrm{a}=12.7 \mathrm{ft}$

Round to the nearest tenth.

Solve.

31) A triangular field has sides of 232.0 m and 202.9 m , and the angle between them measures 61.03°. Find the area of the field. Round to the nearest square meter.

Solve the triangle if possible. Find angle B in degrees (rounded to the nearest hundreth)

$$
\text { 32) } \begin{aligned}
\mathrm{a} & =8.7 \\
\mathrm{~b} & =13.1 \\
\mathrm{c} & =15.9
\end{aligned}
$$

$$
\mathrm{m} \angle \mathrm{~B}=
$$

Solve the triangle, if possible. Round to the nearest hundredth.

$$
\text { 33) } \begin{aligned}
\mathrm{C} & =120^{\circ} 45^{\prime} \\
\mathrm{b} & =4.70 \\
\mathrm{a} & =12.20
\end{aligned}
$$

$$
\text { 34) } \begin{aligned}
\mathrm{a} & =7 \mathrm{ft} \\
\mathrm{~b} & =7 \mathrm{ft} \\
\mathrm{c} & =16 \mathrm{ft}
\end{aligned}
$$

Decide whether to use the law of sines or the law of cosines. Then solve the triangle if possible. Round to the nearest hundredth, unless otherwise indicated.

$$
\text { 35) } \begin{aligned}
C & =108.0^{\circ} \\
\mathrm{a} & =6.10 \\
b & =9.01
\end{aligned}
$$

$$
\text { 36) } \begin{aligned}
\mathrm{A} & =30.0^{\circ} \\
\mathrm{a} & =6.77 \\
\mathrm{~b} & =13.54
\end{aligned}
$$

$$
\text { 37) } \begin{aligned}
B & =36.0^{\circ} \\
\mathrm{C} & =104.5^{\circ} \\
b & =31.82
\end{aligned}
$$

Solve.

38) Two cars leave the same place at the same time. The first drives in a straight line $\mathrm{N} 35^{\circ} \mathrm{W}$ at 30 miles per hour and the second drives in a straight line $\mathrm{N} 12^{\circ} \mathrm{E}$ at 40 miles per hour. After 1 hour, how far apart are the cars? (Round answer to the nearest mile)
39) Two ships leave a harbor together traveling on courses that have an angle of 130° between them. If they each travel 538 miles, how far apart are they to the nearest mile?
40) Two airplanes leave an airport at the same time, one going northwest ($\mathrm{N} 35^{\circ} \mathrm{W}$) at 406 mph and the other going east at 325 mph . How far apart are the planes after 4 hours to the nearest mile?

Answer Key

Testname: 114E4REV. 0131

1) C
2) Domain: $[-1,1]$; Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$; key points: $\left(-1,-\frac{\pi}{2}\right),(0,0),\left(1, \frac{\pi}{2}\right)$
3) Domain: $[-1,1]$; Range: $[0, \pi]$; key points: $(-1, \pi),\left(0, \frac{\pi}{2}\right),(1,0)$
4) Domain:($-\infty, \infty$); Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$; Equations of Horizontal asymptotes: $y= \pm \frac{\pi}{2}$
5) $-\frac{\pi}{6}$
6) $\frac{3 \pi}{4}$
7) -0.797
8) 1.993
9) -0.586
10) D
11) -30°
12) $\frac{\pi}{3}$
13) $\frac{\pi}{5}$
14) $-\frac{\pi}{5}$
15) $\frac{\pi}{4}$
16) $-\frac{\pi}{6}$
17) $\frac{2 \sqrt{5}}{5}$
18) $\frac{\sqrt{15}}{4}$
19) $\frac{1}{2}$
20) $0, \pi, \frac{\pi}{6}, \frac{5 \pi}{6}$
21) $\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
22) $2 n \pi, \frac{\pi}{2}+n \pi$
23) $\theta=105^{\circ}, 165^{\circ}, 285^{\circ}, 345^{\circ}$
24) $\theta=15^{\circ}, 165^{\circ}, 195^{\circ}, 345^{\circ}$
25) $\mathrm{A}=51.5^{\circ}, \mathrm{a}=34.16, \mathrm{c}=41.02$
26) $\mathrm{A}=19.46^{\circ}, \mathrm{C}=143.14^{\circ}, \mathrm{c}=11.98$
27) No solution
28) 235 m
29) 26 mi
30) $403 \mathrm{ft}^{2}$

Answer Key

Testname: 114E4REV. 0131
31) $20,591 \mathrm{~m}^{2}$
32) $\mathrm{A}=33.16^{\circ}, \mathrm{B}=55.45^{\circ}, \mathrm{C}=91.39^{\circ}$
33) $\mathrm{c}=15.15, \mathrm{~A}=43^{\circ} 47^{\prime}, \mathrm{B}=15^{\circ} 28^{\prime}$
34) No solution
35) Law of cosines; $\mathrm{c}=12.34, \mathrm{~A}=28.04^{\circ}, \mathrm{B}=43.96^{\circ}$
36) Law of sines; $B=90.0^{\circ}, C=60.0^{\circ}, c=11.73$
37) Law of sines; $\mathrm{A}=39.5^{\circ}, \mathrm{a}=34.43, \mathrm{c}=52.41$
38) 29 miles
39) 975 mi
40) 2704 mi

