MAC2311

Ref. #: 829232

Term: Spring 2015 (2014_2)

Exam #2

Name	Grade
Student ID	Date
SHORT ANSWER. Write the word or phrase that best comp	letes each statement or answers the question.
Find an equation for the tangent to the curve at the given point $h(x) = t^3 - 9t - 4$, $(3, -4)$	int. 1)

2) $y = 3x^3 - 5x^2 + 8$

Solve the problem.

3) Find the points where the graph of the function have horizontal tangents.

3) _____

 $f(x) = x^3 - 21x$

Calculate the derivative of the function. Then find the value of the derivative as specified.

4)
$$f(x) = \frac{8}{x+2}$$
; f'(0)

Use the formula $f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$ to find the derivative of the function.

5)
$$f(x) = \frac{4}{x+4}$$

5) _____

Solve the problem.

6) A ball dropped from the top of a building has a height of $s = 576 - 16t^2$ meters after t seconds. How long does it take the ball to reach the ground? What is the ball's velocity at the moment of impact?

Find the derivative.

7)
$$y = (\csc x + \cot x)(\csc x - \cot x)$$

Find the indicated derivative.

8) Find
$$y'''$$
 if $y = 2x \sin x$.

8)			
-/		 	

Solve the problem.

- 9) The driver of a car traveling at 30 ft/sec suddenly applies the brakes. The position of the car is $s = 30t 3t^2$, t seconds after the driver applies the brakes. How many seconds after the driver applies the brakes does the car come to a stop?
- 9) _____

Find the derivative.

10)
$$s = t^3 \tan t - \sqrt{t}$$

The function s = f(t) gives the position of a body moving on a coordinate line, with s in meters and t in seconds.

11) $s = 5t^2 + 4t + 6, 0 \le t \le 2$

11) _____

Find the body's speed and acceleration at the end of the time interval.

Find the derivative.

12)
$$y = 2x^2e^{-x}$$

Solve the problem.

- 13) A rock is thrown vertically upward from the surface of an airless planet. It reaches a height of $s = 120t 3t^2$ meters in t seconds. How high does the rock go? How long does it take the rock to reach its highest point?
- 13) _____

Find the derivative.

14)
$$r = 2 - \theta^4 \cos \theta$$

14) _____

Find the derivative of the function.

15)
$$f(t) = (6 - t)(6 + t^3)^{-1}$$

15)

Find y'.

16)
$$y = (x^2 - 2x + 2)(4x^3 - x^2 + 4)$$

16) _____

The equation gives the position s = f(t) of a body moving on a coordinate line (s in meters, t in seconds).

17) $s = 8 \sin t - \cos t$

17) _____

Find the body's velocity at time $t = \pi/4$ sec.

Provide an appropriate response.

18) Find an equation for the tangent to the curve $y = \frac{10x}{x^2 + 1}$ at the point (1, 5).

Find the derivative.

19)
$$s = t^8 - \csc t + 13$$

19) _____

Solve the problem.

20) Find an equation of the tangent to the curve
$$f(x) = \sqrt{x+2}$$
 that has slope $\frac{1}{4}$.

Find the derivative.

21)
$$y = \frac{10}{\sin x} + \frac{1}{\cot x}$$

Answer Key

Testname: MAC2311 - EXAM #2

1)
$$y = 18t - 58$$

3)
$$(-\sqrt{7}, 14\sqrt{7}), (\sqrt{7}, -14\sqrt{7})$$

3)
$$(-\sqrt{7}, 14\sqrt{7}), (\sqrt{7}, -14\sqrt{7})$$

4) $f'(x) = -\frac{8}{(x+2)^2}; f'(0) = -2$

5)
$$-\frac{4}{(x+4)^2}$$

7)
$$y' = 0$$

8)
$$y''' = -2x \cos x - 6 \sin x$$

10)
$$\frac{ds}{dt} = t^3 \sec^2 t + 3t^2 \tan t - \frac{1}{2\sqrt{t}}$$

12)
$$2xe^{-x}(2-x)$$

14)
$$\frac{dr}{d\theta} = -4\theta^3 \cos \theta + \theta^4 \sin \theta$$

15)
$$f'(t) = \frac{2t^3 - 18t^2 - 6}{(6 + t^3)^2}$$

16)
$$20x^4 - 36x^3 + 30x^2 + 4x - 8$$

$$\frac{9\sqrt{2}}{2}$$
 m/sec

18)
$$y = 5$$

19)
$$\frac{ds}{dt} = 8t^7 + \csc t \cot t$$

20)
$$y = \frac{1}{4}x + \frac{3}{2}$$

21)
$$y' = -10 \csc x \cot x + \sec^2 x$$